ALLOY 2205 DATA SHEET

UNS S32205, EN 1.4462/UNS S31803

//// Alloy 2205 (UNS designations S32205/S31803) is a 22 % chromium, 3 % molybdenum, 5-6 % nickel, nitrogen alloyed duplex stainless steel. Duplex stainless steels are neither fully austenitic like 304 stainless, nor fully ferritic, like 430 stainless. Alloy 2205, when heat treated properly, has a microstructure that has nearly equal proportions of austenite and ferrite phases. This provides Alloy 2205 with superior resistance to stress corrosion cracking as well as improved resistance to crevice corrosion and general corrosion environments as compared with T304 and T316 Stainless Steels.

//// The duplex structure of Alloy 2205 results in a yield strength that is around twice that of austenitic stainless steels. This allows engineers to save weight by using lighter gage materials without compromising structural integrity which in turn, makes the alloy extremely cost effective.

//// Alloy Alloy 2205 is well suited for environments in the -50 °F to +600 °F temperature range. It is also highly suitable for service in environments containing chlorides and hydrogen sulfide, such as marine environments and the oil and gas extraction industry, the pulp and paper industry, the mining industry, oil and gas production, and heat exchangers for use in environments containing chlorides or brackish water as the cooling medium.

- //// Pressure vessels, tanks and piping systems for the Chemical Process Industry;
- //// Piping, tubing and heat exchangers for the Oil and Gas Industry;
- //// Digesters, liquor tanks and bleaching equipment for the Pulp and Paper Industry;
- //// Rotors, fans, shafts and rolls in environments requiring high strength and high corrosion resistance;
- //// Tanks for ships and trucks;
- //// Food processing equipment;
- //// Biofuel plants.

Product form	Specifications					
Froduction	ASTM	ASME	EN	Euronorm	AFNOR	DIN
Plate sheet and Strip			10000 5	1.4462X2CrNi	Z3CrNi	
	A240 SA240 10028-7 MoN	MoN22.5.3	22.05 AZ	W.Nr 1.4462		
Seamless, Pipe and Tubing				1.4462X2CrNi	Z3CrNi	
ecannoco, i ipo ana i abilig	A 790 /A 928	SA 790	10028-7	MoN22.5.3	22.05 AZ	W.Nr 1.4462
Rod. Bar and Wire				1.4462X2CrNi	Z3CrNi	
	A 270 /A 789	SA 789	10028-7	MoN22.5.3	22.05 AZ	W.Nr 1.4462
Forgings and Rings	A182/A276	SA 182/ SA 276		1.4462X2CrNi	Z3CrNi	
	A 479	SA 479	10028-7	MoN22.5.3	22.05 AZ	W.Nr 1.4462

ALLDY 2255

Grade	с	Mn	Si	Cr	Ni	Мо	Р	S	N	Fe
S 31803	0.030 max	2.00 max	1.00 max	21.00→23.00	4.50→6.50	2.50→3.50	0.030 max	0.020 max	0.08→0.20	Balance
\$ 32205	0.030 max	2.00 max	1.00 max	21.00→23.00	4.50→6.50	2.50→3.50	0.030 max	0.020 max	0.14→0.20	Balance

//// ANNEALED MATERIAL TYPICAL ROOM TEMPERATURE

	Yield Streng	th 0.2% offset	Ultimate Te	nsile Strength	Elongation	
Grade	psi	MPa	psi	MPa	% to 2" (51 mm)	Hardness
S 31803	65000	450	90000	620	25.0	31 Rc (293 HBN) max
S 32205	65000	450	95 000	655	25.0	31 Rc (293 HBN) max

//// The Duplex structure of Alloy 2205 gives it considerably higher strength that T316L stainless steel. This allows the use of lighter sections of material without any sacrifice in structural performance. The following chart compares the mechanical properties of Alloy 2205 to other corrosion resistant alloys.

////SPECIFIED TENSILE PROPERTIES PER ASTM A240

Alloy	Ultimate Tensile Strength Ksi minimum	Yield Strength Ksi minimum	Hardness maximum
2205	95	65	31 Rc
AI 2003	95	65	31 Rc
T316L Stainless Steel	75	30	95 Rb
T317L Stainless Steel	75	30	95 Rb
T317LMN Stainless Steel	80	35	96 Rb
904 L	71	31	90 Rb
20	80	35	95 Rb
Al-6Xn	95	45	100 Rb

///ASME BOILER & PRESSURE VESSEL CODE, SECTION VIII, DIVISION 1, ALLOWABLE STRESS VALUES, KSI

Alloy	200 ° F	300 ° F	400 ° F	500 ° F	600 ° F
2205	25.7	24.8	23.9	23.3	23.1
AI 2003	26.3	24.8	24.5	24.5	24.5
T316L Stainless Steel	20.0	20.0	19.3	18.0	17.0
T317L Stainless Steel	17.0	15.2	14.0	31.1	12.5
904 L	16.7	15.1	13.8	12.7	11.9
20	20.6	19.7	18.9	18.2	17.7
Al-6Xn	26.2	23.8	21.9	20.5	19.4

//// ELEVATED TEMPERATURE FATIGUE RESISTANCE

Temperature		Yield Strength	2 % Offset	Tensile Strengt	th	Elongation
°F	°C	Ksi	Мра	Ksi	Мра	in 2"
200	93	30.2	208	75.2	518	39.5
400	204	26.0	179	66.0	455	28.0
600	316	23.1	159	64.2	443	26.0
800	427	21.2	146	62.7	433	25.0
1000	538	21.0	145	61.3	423	23.0
1200	649	21.1	146	54.4	375	19.5
1400	760	21.1	146	37.9	261	23.0
1600	871	16.2	112	22.5	155	48.0
1800	982	8.0	55	11.3	78	41.0

Density	Density Magnetic Permeability		Thermal Conductivity		Thermal Expansion Coefficient	
0.283 lb/in ³	1.02	212 ° F	8.4 Btu/hr-°F	68→212 ° F	$7.2 \mu \text{in/in/°F}$	
7.82 g/cm ³		100 ° C	14.6 W/m-°K	68→392 ° F	7.5μin/in/° F	
				68→572 ° F	7.8μin/in/° F	
Elastic modulus		Poisson's Ra	itio	20→100 ° C	13.0µm/m/°C	
72 °F 29.0 10 ⁶ P	i	0.2		20→200 ° C	13.5µm/m/°C	
22 ° C 200 GPa		-		20→300 ° C	14.0µm/m/°C	

////GENERAL CORROSION RESISTANCE

Alloy 2205 is resistant to dilute reducing acids and moderate to high concentrations of oxidizing acids. The alloy is resistant to low concentrations of organic acids, but should be used with caution in higher concentrations at elevated temperatures.

Corrosion Rate in MPY (mm / a)					
Test Solution	T316 Stainles	s Steel	Alloy 2205		
Boiling	Base Metal	Welded Sample	* Base metal	Welded Sample*	
20 % Acetic Acid	0.1(<0.01)	0.1(<0.01)	0.1(<0.01)	0.1(<0.01)	
45 % Formic Acid	23.4 (0.60)	20.9 (0.53)	0.5(0.01)	0.5(0.01)	
1 % Hydrochloric Acid	1.0(0.02)	63.6(1.61)	0.8(0.02)	0.6(0.02)	
65 % Nitric	22.3(0.56)	18.4 (0.46)	20.6(0.52)	19.3(0.49)	
10 % Oxalic Acid	48.2(1.22)	44.5(1.13)	7.8(0.20)	5.1(0.13)	
20 % Phosphoric Acid	0.6(0.20)	1.08(0.03)	0.8(0.02)	1.2(0.03)	
10 % Sodium Bisulfate	71.6 (1.82)	56.2(1.43)	25.4(0.65)	19.9(0.51)	
50 % Sodium Hydroxide	77.6(1.97)	88.4 (2.17)	23.9(0.61)	22.6 (0.57)	
10 % Sulfamic Acid	124.0 (3.15)	119.0(3.03)	22.0(0.56)	17.4(0.44)	
10 % Sulfuric Acid	635.0(16.1)	658.0(16.7)	206.0(5.23)	200.0(5.08)	
Ferric Sulfate/ 50 % Sulfuric Acid (A 262 B)	26.0(0.66)	23.3(0.59)	19.9(0.51)	17.6(0.45)	

*Autogenous welds, not heat treated

ALLOY 2295

////CHLORIDE STRESS CORROSION RESISTANCE

The duplex nature of Alloy 2205 prodives it with substantially greater resistance to Chlorice Stress Corrosion Cracking over T304L, T316L and T317L Stainless Steel.

	Chloride Stress	Corrosion Resis	stance (Boiling)
Alloy	42 % MgCl ₂	33 % LiCi	26 % NaCl
Austenitic T304L (8 % Ni)	Failed	Failed	Failed
	(20 hours)	(96 hours)	(850 hours)
Ferritic T439 (0.1 % Ni)	Passed	Passed	Passed
	(2000 hours)	(2 000 hours)	(2 000 hours)
Duplex Alloy 2205 (5 % Ni)	Failed	Passed	Passed
	(89 hours)	(1000 hours)	(1000 hours)
Duplex Alloy 2205 (5 % Ni)	Failed	Passed	Passed
Welded	(89 hours)	(1 000 hours)	(1 000 hours)

*Failed indicates failure by chloride stress corrosion cracking in the time span noted.

////ONSET OF CREVICE CORROSION

Crevice Corrosion Data in 10 % Ferric Chloride			
Alloy	Temperature °F(°C)		
T316 Stainless steel	27 (-3)		
T317 Stainless steel	35 (2)		
Alloy 2205	69 (20)		
E-Brite®	75 (24)		
AL-6XN®	113 (45)		
Alloy 625	113 (45)		
AL 29-4 C [⊗]	125 (52)		

////ELECTROCHEMICAL PITTING CORROSION

Electrochemical Pitting Corrosion in 1 M Sodium Chloride Solution			
Alloy Temperature °F(°C)			
T316 Stainless steel	64 (18)		
E-Brite®	97 (36)		
904 L	120 (49)		
Alloy 2205	120 (49)		
T317LXN Stainless steel	132 (56)		
AL-6XN [®]	194 (90)		

Electrochemical Pitting Corrosion in 0.1 M Sodium Chloride Solution			
Alloy Temperature °F(°C)			
T304 Stainless steel	77 (25)		
T317 Stainless steel	82 (28)		
Type 444 Stainless steel	61 (16)		
Alloy 2205	144 (62)		

////With standard, high-speed steel tooling, Alloy 2205 can be machined at the same feeds and speeds as T316L stainless steel. When carbide tooling is used, cutting speeds should be reduced by approximately 20 % relative to the speeds for T316L stainless steel. Powerful equipment and rigid mounting of tools and parts are necessary

ALLDY 2295

//// Alloy 2205 should be annealed at 1 900 °F minimum followed by rapid cooling, preferably by water quenching. This treatment applies to both solution annealing and stress annealing. Stress relief treatments at any lower temperatures carry the risk of precipitation of detrimental intermetallic or nonmetallic phases.

////HOT FORMING

//// Forming Alloy 2205 below 600 °F is recommended whenever possible. When hot forming is required, the metal should be heated uniformly and worked in the range of 1750 °F to 2250 °F. The metal is very soft at these temperature ranges and is easily formed. Above this range, Alloy 2205 is susceptible to hot tearing. Whenever hot forming is done, it should be followed by a full solution anneal at 1900 °F minimum followed by rapid quenching to restore phase balance, toughness, and corrosion resistance. Stress relieving is not required or recommended, however, if it must be performed, the material should receive a full solution anneal at 1900 °F minimum followed by rapid cooling or water quenching.

////COLD FORMING

//// Alloy 2205 is easily sheared and cold formed on equipment suitable for working stainless steels. However, due to the high strength and rapid work hardening of Alloy 2205, forces substantially higher than those for austenitic stainless steels are required to cold form it. Also, due to the high strength, a somewhat larger allowance must be made for "spring back".

////Alloy 2205 can be readily welded. The desired result of welding Alloy 2205 is that the weld metal and the heat-affected (HAZ) retain the corrosion resistance, strength and toughness of the base metal. The actual welding of Alloy 2205 is not difficult but it is necessary to design welding procedures that lead to a favorable phase balance after welding and one which will avoid precipitation of detrimental intermetallic or nonmetallic phases.

//// Alloy 2205 can be welded by GTAW (TIG), GMAW (MIG), SMAW ("stick" electrodes), SAW, FCW and PAW methods.